
J. Fluid Mech. (1975), vol. 71 pnrt 2, pp. 407-415 

Printed in Great Britain 
407 

The development of a partially mixed region in a 
stratified shear flow 
By R. J. HARTMAN 

Department of Physics, University of California, Santa Barbara 

(Received 16 October 1974) 

The influence of a mean uniform shear on the development of a partially mixed 
region in an unbounded stratified fluid is considered. Results are given for the 
very near field and the far field in the large-J (Richardson number) limit. 
A qualitative discussion for J 2 1 is also included. The near-field motion is 
modified on a time scale given by RT N J - f ,  where R = dU/dz is the mean shear 
strength. This modification is shown to be a consequence of the kinematic distor- 
tion of the wake profile by the mean shear. The radiation field is largely anticipated 
by the wave-packet discussion of an earlier paper. 

1. Introduction 
The problem of the dynamical development of an initially mixed region (wake) 

in a density-stratified fluid has alreadyreceivedexperimental (Schooley & Stewart 
1963; Wu 1069) and theoretical (Mei 1969; Miles 1971; Hartman & Lewis 1972) 
attention. In flows of geophysical and astrophysical interest, stratification is 
invariably accompanied by an imposed shear, which, presumably, alters the basic 
features of the development considerably. We have therefore chosen a parti- 
cularly simple model which permits extensive analytical analysis in an effort to 
isolate the principal effects of such an imposed shear. 

The initial-value approach of an earlier paper (Hartman 1975, designated 
hereafter as I) is the basis for our treatment. The notation and basic flow of that 
paper are adopted without comment. We give the near-field and radiation-field 
development of the initial perturbation considered by Hartman & Lewis ( 1972). 
The radiation field is anticipated by the wave-packet discussion of I and the zero- 
shear results of Hartman & Lewis. The near field exhibits several unusual 
features, which are discussed in the body of the paper. We limit our discussion 
primarily to the weak-shear (large-J) regime, although some conclusions for 
J 2 1 can be drawn. 

2. The initial-value problem 
We adopt the basic flow, notation and several of the results of I without com- 

ment. We choose the initial wake geometry and initial conditions of Hartman & 
Lewis (1972) : 

v(x, t = 0) = 0, p(x,  t = 0) = 
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Here r is the radius from the origin and we tacitly assume e < Idpo/dzl to permit a 
linear analysis. The initial conditions on t.he vorticity < follow from (2.1) and the 
linearized vorticity equation (in convected co-ordinates) 

The Fourier-transformed initial conditions on 5 follow from (2.2) and the Fourier 
transform of (2.1)' 

Here J, is a Bessel function of order n, (k, 0) represents the polar co-ordinate 
decomposition of the Fourier component k and we measure all angles counter- 
clockwise from $. The solution to the initial-value problem for < now follows from 
the Fourier inversion integral (I, 2.13), while the solution for the stream function 
4 follows from (I, 2.10). We have 

p"(k, t = 0) = - 27rie(n2/k) J2(ka) sin 8. (2.3) 

2n J ( k a )  sin0 f (7 ,@ - exp [ikr cos (0 - u)]  - sin [y(7,  O ) ] ,  

(2.4) 
1 + T 2  Ic cose 

where ( 2 . 5 ~ )  

(2.5b) 

T = Rr-tan#,  T(0) = -tanO. (2.5c,d) 

We use the polar representation (r, a )  for field points in convected co-ordinates 
and we shall not, for the most part, transform our analytic results back into un- 
convected (laboratory) co-ordinates, although the inverse transform to (I, 2.7) 
may be performed without difficulty. Our problem is now reduced to the evalua- 
tion of (2.4). 

3. The near field 
I n  'laboratory', or unconvected, co-ordinates the basic wake profile is kine- 

matically deformed in time into an ellipse whose semimajor a.xis makes an angle 

tan-1 [ - $Rt + (1 + $R2t2)&] ( 3 . 1 ~ )  

with the horizontal. The length of the semimajor axis is 

A = a[  1 + R2t2 + Rt( 1 + $R2t2)4]t ( 3 . l b )  

and that of the semiminor axis is B = d / A .  As t + 0 the profile becomes nearly 
circular with its semimajor axis a t  45" to the horizontal. As time proceeds the 
ellipse elongates and rotates, becoming for Rt 3 I a thin, nearly horizontal sheet. 
(See also figure 1 .) In  the convected co-ordinate system, the basic circular outline 
of the initial perturbation does not change and we may consider r > a and r < a 
separately. The integral over k occurring in (2.4) is of the Weber-Shafheit,lin 
form and may be evaluated exactly (HMF, equations 11.4.35 ff. t). 

by HMF). 
t We use the terminology and notation of Abrarnowitz & Stegun (1970, heroin denoted 
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For r < n the remaining integral over 8 may be evaluated, for Nt >> 1,  by 
standard stationary-phase procedures. This evaluation is complicated slightly 
by the occurrence of two independent parameters ( J  and R7) in the phase 
y(7,O).  We therefore give a brief sketch of our analysis. 

We have, as an exact result up to this point, 

where a spatially constant term, irrelevant to the velocity fields, has been 
dropped. For J large we may easily obhain the first term of an asymptotic 
expansion of ( 3 . 2 )  by the usual stationary-phase procedure, provided that R7 is 
not small. When RT < 1 we have 

y(7,O) = Nt cos 8( 1 + ~ ( R T ) ) ,  

which still allows a stationary-phase asyniptotic evaluation in l / N t .  We note 
here that such asymptotic series can generally be expected to give quite good 
qualitative results even for J 2 1 and N7 2 1 respectively. Also, since NT = JaR7, 
it' is not inconsistent to consider NT large while RT 6 I .  For NT not necessarily 
large, the integrand in ( 3 . 2 )  may be expanded in a power series in RT and the 
coefficients computed exactly. The results of these evaluations may be con- 
veniently summarized as follows: 

for 0 < RT < J - i  (early stage); ( 3 . 3 n )  

x (1 -I- O(J-4)) for R7 2 J - )  (late stage). ( 3 . 3 b )  

Here Q(7) = 2J4 In [4R7 + ( 1  + $ R 2 ~ 2 ) 4 ]  - $lr. 

In (3 .3a) ,  all terms 0(R272) have been omitted since these are necessarily 
O(J-4). We note that for NT N 1 the coefficient of RT in ( 3 . 3 ~ )  is in error in the 
sense that the validity of this term (and this term only) is limited to N7 1 as 
described earlier. For N7 N 1 ,  however, this erroneous contribution is 0(J-4) so 
the error does not manifest itself a t  our level of approximation. 

The stream function ( 3 . 3 )  is seen to consist of two distinct parts. The first term, 
which dominates the R7 < J-2 behaviour, is just the irrotational zero-shear 
result of Hartman & Lewis. The second term, which dominates the R7 > J-a 
development, is a rotational term, giving rise to a iiniform vorticity throughout 
the wake, and has no counterpart in the zero-shear problem. In fact, either by 
following the procedure used to obtain ( 3 . 3 )  or more simply by operating on ( 3 . 2 )  
with the Laplacian, we have for all N7 % 1 (and qualitatively for N7 2 1 )  

sg R T (  RTI-1 sin Q(7) {1 + O(J-3)). 
a g ,  7 )  = - - - 

NPOO 2 
1 +- ( 3 . 4 )  
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FIGURE 1. The perturbed streamlines, viewed in ‘laboratory’ co-ordinates, as given by 
(3.3). (a )  RT = 0.3 J-*. ( 6 )  Rr = 1.3 J-*. (c) Rr = 4 J-*. (d )  R7 = 1. In  (d )  the solid line 
represents the position of an initially vertical fluid line element, the (impictured) stream- 
lines inside the wake boundary are parallel to the dashed line, and the arrows depict the 
direction and magnitude of the perturbed velocity. The ticks mark t,he semimajor axis of 
the ellipse [see (3.1 a, b ) ] .  

In  the very early stages of collapse (RT -g J-a) ,  the shape of the streamlines 
(and particle paths) is given by the irrotational right-hyperbolic form of the zero- 
shear problem (figure 1 a). As RT + J- t  the streamlines remain hyperbolic but 
the initially horizontal asymptotes of the hyperbolas rotate towards the vertical 
(figure 1 b, c ) .  For RT N 1 the influence of the irrotational field is negligible and we 
are left with a uniform oscillating shear perturbation (figure 1 d). It is emphasized 
that the drastic alteration of the basic flow structure illustrated in figure 1 occurs 
on a sufficiently short time scale (RT N J-4) that the initially circular wake 
profile (viewed in laboratory co-ordinates) remains unchanged. 
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The behaviour of the total wake energy is also of interest. In  the early stage, 
energy in t,he form of internal waves is radiated copiously and appears in the 
radiation field ($4). By the time RT N J-4, t3he wake retains only a fraction 
O(J-9) of the initial perturba.tion energy. However, i t  is easily verified from 
(3 .3b )  that for RT > J-1 the total wake energy increases to a maximum when 
RT = 4 2 .  At this point, the total energy is a fraction O(J-:) of the initial (t  = 0) 
energy, an increase O(J4)  over the wake energy minimum occurring near 

The wake energy balance in the regime Rr N 1 consists of two sometimes con- 
flicting contributions : internal wave radiation, evidenced by the factor ( N T ) - ~  
in (3 .3b ) ,  and the transfer of energy between the wake and the mean flow, 
evidenced by the amplitude factor (< + 4 R ~ y ) ~ R 7 / (  1 + $R2r2)f. For RT 5 J 2 ,  
Reynolds stresses transfer energy from the mean flow to the wake faster than it 
can be radiated away. For 42 < RT < 2 J2, the internal wave radiation over- 
comes the flow-wake transfer, while for RT > 2 4 2  both the radiative effects and 
the Reynolds stresses act to reduce the wake energy. A detailed analysis of the 
Reynolds stresses for this problem will not be given. 

It is interesting that the shearing perturbation of ( 3 . 3 b )  and figure 1 (d )  is a 
relatively ineffective radiator of internal waves. The flow due to the initial 

RT = J-4. 

(3.5) 

which generates a shearing motion similar to that in figure i(d),  can, in the 
absence of shear (R = 0), be obtained after the manner of Hartman & Lewis 
(1972). The result, 

p(x ,  t )  = 2m[J0(Nt) - J,(Nt)/Nt] ( r  < a) ,  

demonstrates clearly the relatively slow (Nt)-l  decay of this perturbation com- 
pared with the (Nt)-g asymptotic behaviour in the Hartman-Lewis problem. 

It is also worthwhile to note that perturbations of the form (2.3), which at 
t = 0 cluster Fourier wave vectors near the vertical, grow especially effectively 
(for RT 5 1) a t  the expense of the mean flow. Perturbations of the form (3.5), 
which cluster wave vectors near the horizontal, grow much less vigorously, if at 
all, for RT 5 1. All perturbation energy is ultimately absorbed into the mean 
flow regardless of the form of the initial disturbance. These observations follow 
directly from the comments on wave-packet energetics given in I along with a 
consideration of the distribution of wave vectors in the initial perturbation. 

For J 2 1 our analysis is, strictly speaking, invalid. However, we can still 
expect qualitatively good results from our saddle-point evaluations, as men- 
tioned earlier, provided that A77 2 1. For very small times we may resort to  an 
expansion of (2.4) in powers of R7. The primary difference between J 2 1 and 
J 9 1 is that the transition between the early and late stages occurs near RT = 1 ,  
when the circular wake profile is also being strongly modified by the mean shear 
(figure I d ) .  Also of importance is the fact that, for J 2 1, there is insufficient 
time for significant internal wave radiation to  occur, so that a much larger 
fraction of the initial perturbation energy is ultimately absorbed locally by the 
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mean flow. Qualitatively, however, the fluid motion is given adequately in this 
regime by the illustrations in figure 1 ,  supplemented by an appropriately dis- 
torted wake profile in accord with the above comments. 

It is perhaps of academic interest to note that the imposed shear does affect 
slightly the surprising discontinuous behaviour of the density and velocity fields 
found by Hartman 8: Lewis near r = a. It may be shown that the velocity 
perturbation near the original discontinuity r = CL exactly sa.tisfies 

(3.6) 

a peculiarity of the linearized inviscid model and the discontinuous initial 
condition. It should be noted that, in contrast to the zero-shear behaviour, the 
presence of shear does cause a slow asymptotic decay of the discontinuity, again 
a consequence of the ultimate absorption of all perturbation energy by the mean 
flow. For comparison, bhe result for this discontinuity found by Hartman & 
Lewis in the zero-shear case is, in our notat'ion, 

€92 cos a 
WZ(Y + &) - W,(T 3 a,) = -~ sin (Nt  cos a).  

NPOO 
(3 .7)  

It is important to appreciate that  here, as in the wave-packet analysis of I, the 
principal effect of an imposed shear is kinematic. Apart from the energy transfer in- 
duced by the Reynolds stresses mentioned above, the central results ofthis paper 
can be understood qualitatively by considering at' each instant an unsheared flow 
whose wake parameters (shape and density distribution) are determined from the 
kinematic distortion of the t = 0 wake by the mean flow. To illustrate this point 
we show, in appendix B, how the onset of the rotational secondary motion of 
( 3 . 3 ~ )  may be simply understood from such a quasi-static analysis.7 

4. The radiation field 
The evaluation of the integrals (2.4) in the radiation zone r/a $ 1 is non- 

standard and we outline the necessary steps in appendix A. 
For r/a 9 1 we find, in the convected co-ordinate system, 

where 

andf,, y and T are given in (2.5). From (I, 4.6), R(T, a)  is seen to be the position, 
of a wave group centred initially a t  r = 0 with a central wave vector of magnitude 
ko = I/a and direction Ok = a + in. Such a wave packet propagates in the 8, 
direction, that is, along the line joining the origin and the field point ( r ,  a).  Thus 
(4. I )  represents an outward-travelling pulse of radiation whose maximum is near 

t That the development of the asymptotic rotational wake behaviour is not in some way 
a consequence of t.he discontinuous initial condition, as is the feature (3.7),  may be seen 
by applying our procediire to a similar, but continuous initid perturbation. The Gaussian 
perturbation p(x, t = 0) = EZ exp ( -  +/az) is especially useful in this respect. 
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r = R(7, a) and which, upon passing a given field point ( r ,  a), oscillates with phase 
y(r ,  a + Qn) and grows or decays with amplitude 

It should be pointed out that the results of this section have been largely 
anticipated by the zero-shear study of Hartman & Lewis, together with the 
wave-packet analysis of I .  We also note that, as always, the amplitude factor 
fn t (7 ,  a + in)/( 1 + T2)  arises from the perturbation-flow energy transfer, while 
the factor J2(R(7, a)/r)/R(7, a)  represents the naturally occurring (zero-shear) 
amplitude decay after the passage of the initial pulse. 

5. Summary and conclusions 
We have used the initial-value approach of I, along with the large-J results 

(I, 3.6), to consider the influence of an imposed mean shear on the wake collapse 
problem of Hartman & Lewis. I n  laboratory co-ordinates, an initially circular 
wake profile is distorted into an ellipse whose semimajor axis grows and rotates 
towards the horizontal on a time scale set by the shear strength. The near-field 
wake dynamics separate naturally into two intervals: Rr < J-: and Rr > J - f .  
I n  the early stage, the motion is largely irrotational with a slowly growing 
rotational component. The irrotational component is essentially the zero-shear 
motion of Hartman & Lewis, and decays rapidly owing to internal wave radiation. 
The rotational component is shown in appendix B to be a consequence of the 
kinematic distortion of the original perturbation by the mean shear. The rota- 
tional component continues to  grow, partly a t  the expense of the irrotational 
perturbation and partly a t  the expense of the mean flow. For Rr > J-i it com- 
pletely dominates the fluid motion in the wake. The wake energy during the late 
stage grows to  a maximum a t  R7 = J2 .  After Rr  = 242, both wave radiation and 
Reynolds stresses serve to reduce the amplitude of the motion. The influence of 
mean shear on the model-characteristic discontinuous behaviour found by 
Hartman & Lewis near T = a was noted. 

I n  the far (radiation) field, the motion is mostly anticipated by the wave- 
packet discussion in I and contains no surprises. 

This work was supported in part by the Advanced Research Projects Agency 
of the Department of Defense under Grant DA-ARO-D-31-124-72-Gl81. 

Appendix A 
As in 5 3, the integral over k occurring in (3.4) may be evaluated exactly. We 

find, limiting ourselves to @ for convenience and employing several straight- 
forward trigonometric substitutions, 
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p = a/r g 1, 5 = 8 - a -  
sin p - /3 and expanding the integrand of (A 2) about 6 = 0, we find 

and 4 = 8-a. Using the smallness of /3 to write 

where 

and j ,  is an nth-order spherical Bessel function. 
In  evaluating I2 it is important to use the fact that  the int,egrand is appreciable 

only near the end points $ = cos-l/3. Using some trigonornetrical rearrange- 
ment, expanding the integrand about the end points and employing the sub- 
stitution (./a) cos $ = cosh s, wc have 

where I, = /om cis(e-S-- e-3s) cos [“(:: - a )  cosh s . ( A 5 b )  I 
Now 1, may be evaluated exactly using Ca~ichy’s theorem on the rectangular 
strip 0 --f co --f co + in --z in --f 0 in the cornplex s plane. We find 

The remarkable cancellation of terms lcading to (4.1 ) probably indicates that we 
have not, in fact, discovered the most expeditious procedure for the far-field 
evaluation of (2.4). 

Appendix B 

Consider the initial perturbation 

p ( x ,  t = 0) = m [ H ( a  - T )  + CT cob‘) (a  - an) iS(n - r ) l ,  (B 1) 

which represents a slightly distorted wake profile, essentially like (2.1). Here B is 
the Hcavisicle unit step function and S the Dirac delta function. The perturbation 
(€3 1) isanaccuraterepresentation ofthe profile (2.1) after akinematic (mean-slieur 
induced) distortion occuri*iiig over a period R7 = (r < 1 [see (3. I)]. The develop- 
ment of this perturbation, in the absence of shear, can easily (and exactly) be 
calculated by the method given in 3. We find, for r < a, 

The first term in (B 2) is simply the untlistorted (irrotational) wake result of 
Hartinan 8: Lewis. The second term represents, in view of (2.2), a vorticity- 
creating or rotational contribution which vanishes at t = 0 and which is pro- 
portional to v. The growth of the rotational component of ( 3 . 3 ~ )  (eviclenccd by 
the amplitude factor R7) is thus seen to  be a kinematic effect of the distortion of 
the initially circular wake profile. 
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